Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.

نویسندگان

  • Samuel Farmer
  • Samuel Silver-Thorn
  • Philip Voglewede
  • Scott A Beardsley
چکیده

OBJECTIVE Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. APPROACH Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal 'prediction' interval between the EMG/kinematic input and the model's estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. MAIN RESULT Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. SIGNIFICANCE The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model's predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Collecting Myoelectric Signals from Individuals with Lower Limb Amputations

Technological advancements in lower limb prostheses have resulted in actuated motors in both knees and ankles. Currently, these components are controlled by information measured from various electromechanical sensors attached to the prosthesis. Our aim is to enhance the control information provided to powered prosthetic components by including input from the user via interpreted myoelectric sig...

متن کامل

The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking

In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial ampu...

متن کامل

Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits

The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-d...

متن کامل

Combining Vibrotactile Feedback with Volitional Myoelectric Control for Robotic Transtibial Prostheses

In recent years, the development of myoelectric control for robotic lower-limb prostheses makes it possible for amputee users to volitionally control prosthetic joints. However, the human-centered control loop is not closed due to the lack of sufficient feedback of prosthetic joint movement, and it may result in poor control performance. In this research, we propose a vibrotactile stimulation s...

متن کامل

Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.

Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neural engineering

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2014